

Theory and Data for Land Use Forecasting

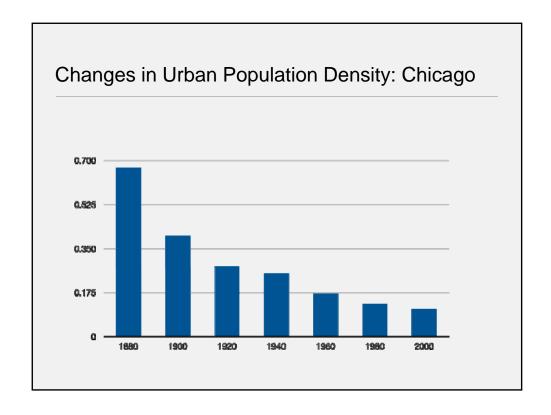
Webinar 2 of an 8-part TMIP Webinar series on land use forecasting methods.

Paul Waddell, 2011

Land Use Forecasting Webinar Series

- The Evolving State of the Practice
- · Land Use Theory and Data
- Sketch Planning and Visioning (e.g. I-PLACE3S)
- Spatial Input-Output Frameworks (e.g. Pecas)
- Dynamic Microsimulation (e.g. UrbanSim)
- · Modeling Real Estate Demand
- Modeling Real Estate Supply
- · Scenario Planning and Visualization

2


Webinar 2: Theory and Data for Land Use Forecasting

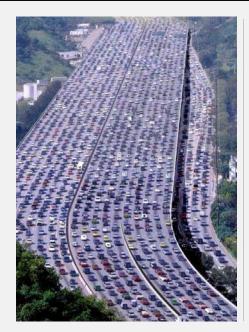
- 1. How transportation influences land use
 - The role of accessibility
 - Measuring accessibility
- 2. Understanding real estate markets
 - Demand factors
 - Supply factors
 - Demand supply interactions
- 3. Data for Land Use Forecasting
 - Data Requirements
 - Data Problems

Changes in Transportation Technology

Technology	Introduced	Travel Time per Mile _(minutes)	
Walking	?	20	
Horse-Drawn Streetcar	1835	12	
Cable Car	1875	7.5	
Electric Streetcar	1890	6	
Rail Rapid Transit	1910	4	
Motor Bus	1915	3	
Automobile	1920	2	

Source: Pickrell

How Transportation Affects Land Use

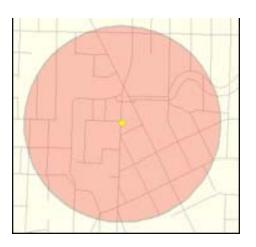

- Accessibility has long been known to influence the location of firms and households activities
 - Firms reduce transport costs to labor, suppliers and consumers
 - Households trade off transportation costs to work and shop against housing costs and other amenities
- · Accessibility strongly influences land prices and density: bid rent theory
- Auto use supports low-density, dispersed urban form, which reinforces auto use
- Transit ridership increases with high density, mixed use development, nodal urban form, and high walk access – and supports Transit Oriented Development
- Walk access to shopping increases pedestrian activity, which increases pedestrian oriented retail

How Transportation Affects Land Use

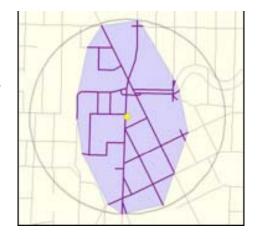
- · Transport effects moderated by durable real estate stock
 - Older cities have dense core built in response to slow travel
 - Newer cities built mostly after highways lack this dense core
- · The current debates:
 - What will be the effect on land use of increasing telecommunications as a 'mode of transportation'?
 - With so much existing transportation capacity, does a marginal addition significantly affect land use?
 - Is transportation becoming less of a factor in location choices?
 - · Multiple worker households
 - · High costs of housing relocation
 - · Growing importance of non-work travel
 - · Growing importance of location amenities
- How much do neo-traditional neighborhood design, transit and non-motorized access affect location, trip rates, distances and modes?

Mobility vs. Accessibility

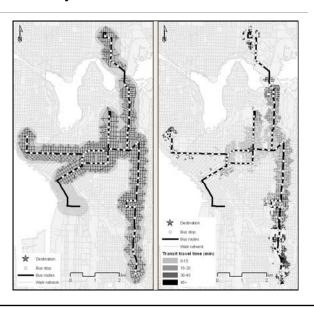
- · Traditionally, transportation planning focused on mobility
 - How congested are roads, how fast is traffic moving on them?
- · More recently, increasing attention has focused on the concept of accessibility
 - How easy is it to access the activities you need or want to engage in?
- · These concepts focus planning efforts very differently
 - Accessibility adds proximity, not just speed of travel. Slow modes like walking can be accessible if destinations are at walking scale.



Mobility vs. Accessibility


Measuring Accessibility: Euclidian Distance

- Advantages:
 - Easy to compute
 - Easy to Interpret
- Disadvantages
 - No network information
 - No congestion effects


Measuring Accessibility: Network Distance

- Advantages
 - Easy to interpret
 - Relatively easy to compute
- Disadvantages
 - Usually excludes local streets
 - Excludes congestion
 - Not multi-modal

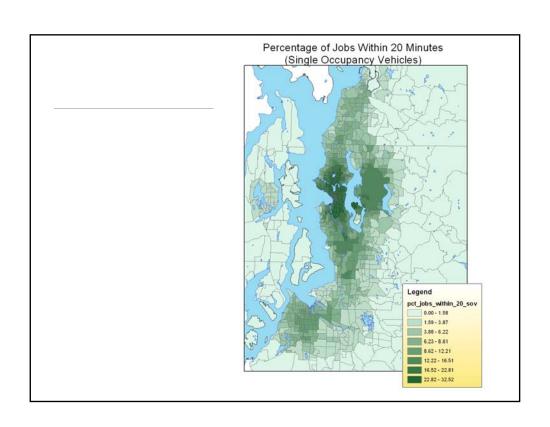
Measuring Accessibility: Parcel + Network

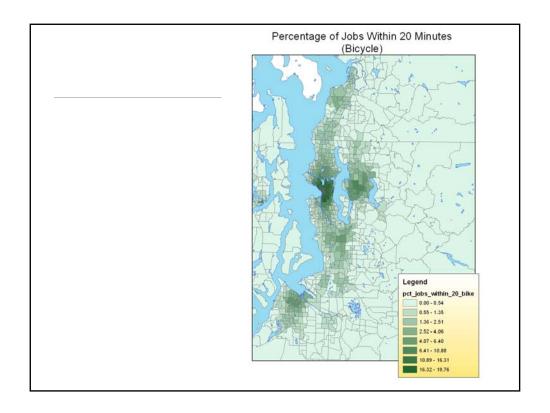
- a) network distance from transit stops
- b) parcels classified by total travel time by transit to destinations (e.g. grocery)
- Brian Lee, Access to Destinations

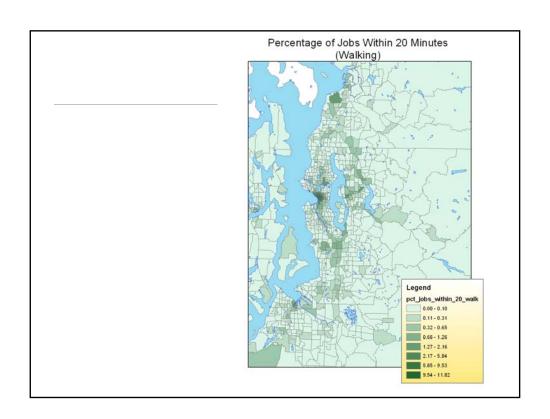
Accessibility in Transportation and Land Use Models

- Virtually all models use Traffic Analysis Zones to represent origins and destinations
- · Zones vary in size, but are relatively large:
- · Transport networks exclude local streets, sidewalks, bike trails
- Walking scale is 'below the radar' in most zones
- Introduces bias in models towards what is 'above the radar':
 - motorized modes
 - long-distance trips

*

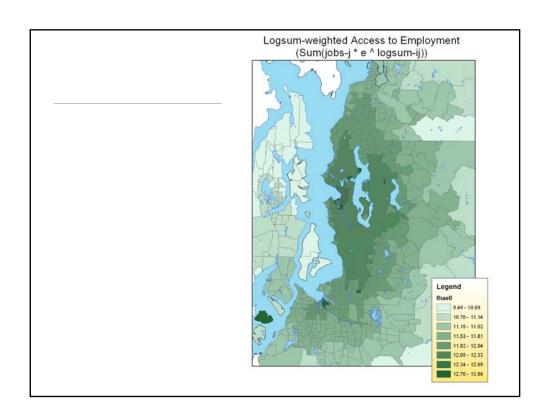

Travel Model 'Accessibility' Outputs


- Standard practice (4-step) travel models, and even more advanced activity-based models, predict for each zoneto-zone O-D pair, by time period, mode and purpose:
 - Travel time
 - Travel cost (tolls) or Generalized cost (time + the time-equivalent of tolls)
 - Trips
 - Most compute a 'composite utility' or logsum from the mode-choice model


- Access to activity within time threshold
 - How many jobs can you reach within 30 minutes by car, during the AM peak period?

$$Access_i = \sum_i Jobs_j \forall Time_{ij} < X$$

- Advantages
 - Easy to interpret
 - Straightforward to compute
- Disadvantages
 - Arbitrariness of threshold
 - Non-time factors ignored
 - Can it represent influence of multiple modes?

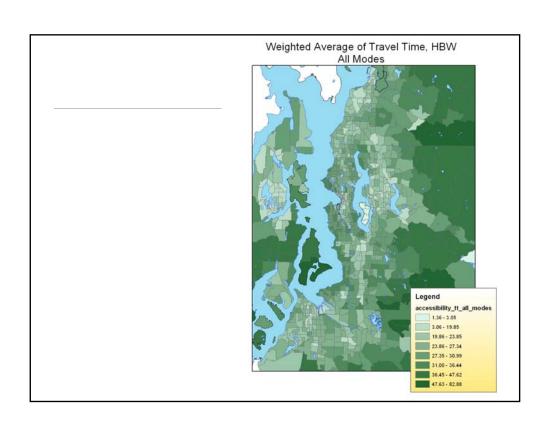

- · Logsum-based Measures of Accessibility
 - Accessibility to employment

$$Access_i = \sum_i Jobs_j e^{Logsum_q}$$

- Advantages

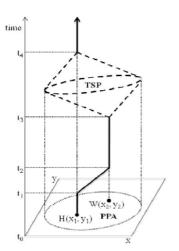
 - Non-time factors incorporatedCan represent influence of multiple modes
 - Reflects spatial distribution of activities

 - Consistency with mode-choice modelRelatively straightforward to compute
- Disadvantages
 - Difficult to interpret
 - Does not reflect information from Trip Distribution


- Trip-Weighted Measures of Accessibility
 - Accessibility for Home-based Work Purpose

$$Access_i = \frac{\sum_{j} (Trips_{ij} Logsum_{ij})}{\sum_{j} Trips_{ij}}$$

- Advantages


 - Non-time factors incorporated
 Can represent influence of multiple modes
 Reflects spatial distribution of activities

 - Consistency with mode-choice and trip distribution models
 - Relatively straightforward to interpret
- Disadvantages
 - Shows less spatial variation

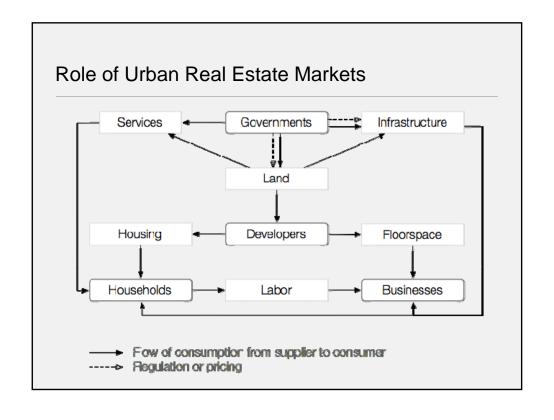
- · Measures of transit accessibility
 - Combine into an overall measure or keep separate?
 - Importance to different consumer types
- Measures of non-motorized accessibility
 - Travel model networks too coarse
 - Zones too large
 - Pedestrian-friendliness measures
 - Data?

Time-Space Prism (TSP) Accessibility Approach (Lee et al, 2009)

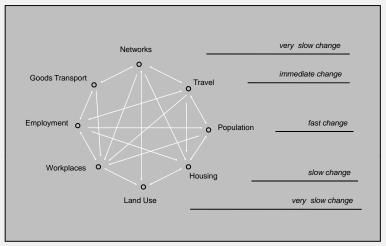
At individual worker level

Constraints:

Spatial: home & workplace


Temporal: home & work schedules

Travel: transportation network & travel


speeds

Webinar 2: Theory and Data for Land Use Forecasting

- 1. How transportation influences land use
 - The role of accessibility
 - Measuring accessibility
- 2. Understanding real estate markets
 - Demand factors
 - Supply factors
 - Demand supply interactions
- 3. Data for Land Use Forecasting
 - Data Requirements
 - Data Problems

Interacting Drivers at Different Scales

Source: Wegener, 1995

Real Estate Demand: Theoretical Framework

- · Macroeconomic Growth
- · Product Differentiation
- Market Segmentation
- · Market Conditions
- · Location Factors
- · Disaggregate Demand
- Submarkets
- · Demand and Supply Interaction
- · Policy Influence

Demand: Macroeconomic Growth

- · Primary driver of demand for urban land and real estate
- · Starting point for analysis of demand:

$$D = AR$$

Where:

D is the demand for real estate

A is the aggregate number of households or employment

R is the space utilization ratio (units/household; square feet per employee)

Demand: Product Differentiation

- · Demand varies by type of real estate
- Introduces complexity of choice:

$$D_{U} = AP_{U}R_{U}$$

Where:

 D_U is the demand for real estate

A is the aggregate number of households or employment

 P_U is the probability that a household will choose to occupy housing type U

 R_U is the space utilization ratio for housing type U

Sample Classification of Real Estate

Residential	Commercial	Industrial
Single-family detached	Retail	Light manufacturing
Rural density	Strip center	Heavy manufacturing
Low-density	Neighborhood center	Industrial Incubator
Mid-density	Power center	Warehouse
High-density	Community center	High-tech/flex space
Duplex/Townhouse	Regional mall	Research and development
Condominium	Office	
Low-density	Low-rise	
High-density	Mid-rise	
Apartments	High-rise	
Low-density	Campus	
Mid-density		
High-density		

Demand: Market Segmentation

- Demand also varies by consumer characteristics such as:
 - Income, Age, Household Size, Life Cycle

$$D_U^C = \sum_C \left(A^C P_U^C R_U \right)$$

Where:

 $D^C_{\, U}$ is the demand for real estate of type U by consumer type C A^C is the aggregate number of households or employment of type C $P^C_{\, U}$ is the probability that a household will choose to occupy housing type U R_U is the space utilization ratio for housing type U

Sample Household Classification

Income	Age of head	Persons	Workers	Children
Less than \$5	15 to 24	1	0	0
\$5,000 to \$9,999	25 to 34	2	1	1 or more
\$10,000 to \$14,999	35 to 44	3	2 or more	
\$15,000 to \$24,999	45 to 54	4		
\$25,000 to \$34,999	55 to 64	5 or more		
\$35,000 to \$49,999	65 to 74			
\$50,000 to \$74,999	75 or over			
\$75,000 to \$99,999				
\$100,000 or more				

Sample Employment Sector Classification

Standard industrial classification codes	Sector description		
99 - 999	Agriculture		
2400 - 2499	Lumber and wood		
2500 - 2599, 3200 - 3999	Other durable		
2000 - 2099	Food products		
2100 - 2399, 2600 - 3199	Other nondurable		
1500 - 1799	Construction		
1000 - 1499	Mining		
4000 - 4999	Transportation		
5000 - 5199	Wholesale trade		
5200 - 5999	Retail trade		
6000 - 6999	Services		
7000 - 7999	Education		
8200 - 8299	Government		
9000 - 9999			

Demand: Market Conditions

· Demand is sensitive to market conditions: price elasticity

$$D_{U}^{C} = \sum_{C} \left(A^{C} P_{U}^{C} \left(p \right) R_{U} \left(p \right) \right)$$

Where:

 D^{c}_{U} is the demand for real estate of type U by consumer type C A^{c} is the aggregate number of households or employment of type C $P^{c}_{U}(p)$ is the probability that a household will choose to occupy housing type U $R_{U}(p)$ is the space utilization ratio for housing type U, as a function of prices

Demand: Location Factors

- · Demand for real estate is also demand for location
- · Ignoring locational factors will seriously bias demand and supply estimates

$$D_{UL}^{C} = \sum_{C} \left(A^{C} P_{UL}^{C} \left(p_{L} \right) R_{U} \left(p_{L} \right) \right)$$

Where:

 D^C_{UL} is the demand for real estate of type U at location L by consumer type C A^C is the aggregate number households or employment of type C $P^C_{UL}(p_L)$ is the probability that a consumer will choose type U at location L $R_{UL}(p_L)$ is the utilization ratio for type U at location L, as a function of prices at L

Demand: Disaggregate Choice

- · Examine demand at a disaggregate level of the individual consumers
- · The problem becomes one of predicting choice from available real estate
- · Preferences will depend on:
 - Household income or firm profit
 - Other household or firm characteristics
 - Price of real estate
 - Structural characteristics
 - Location characteristics

Demand: Disaggregate Choice

 Most common technique for analyzing disaggregate consumer choice is the multinomial logit model:

$$P_{UL}^{C} = \frac{e^{\alpha(Y-P_{U})+\beta S_{U}+\delta L_{U}}}{\sum_{U} e^{\alpha(Y-P_{V})+\beta S_{V}+\delta L_{V}}}$$

Where

PCUL is the probability of a consumer of type C choosing site u from the set U

Y is household income or firm profit

P is he price of the building

S is a set of structural characteristics of the building

L is a set of location characteristics at the site are sets of estimated demand parameters

Real Estate Supply: Inelastic in Short Run

- Market signals (prices, vacancy rates)
- · Identification of site; option to buy
- · Permitting and review
- · Financing
- · Land acquisition
- Subdivision
- · Site preparation
- Construction
- · Sale or lease

Supply: Constraints

- Site Availability
- · Physical Constraints
 - Topography
 - Water
 - Slope
 - Access/egress
- · Zoning
- · Infrastructure Availability
- Environmental Regulations
- · Urban Growth Boundary

Supply of Urban Development


- · Development Decisions Based on Expected Rate of Return on Investment:
 - Expected sale price; net present value of rents
 - Cost of capital: Interest rate
 - Opportunity cost of next best investment alternative
 - Tax treatment
 - Costs of development: land, labor, material
 - Infrastructure extension; concurrency
 - Impact fees or other development fees
 - Holding costs due to construction delay

Supply of Urban Development

- · Developer Industry
 - Economies of scale and ease of financing favor large-scale development; standard products
 - Specialization in specific real estate products
 - Policy interest in stimulating infill and redevelopment; smaller lot residential development
 - Policy interest in development 'paying its way'
 - Effects of policies on development not well understood

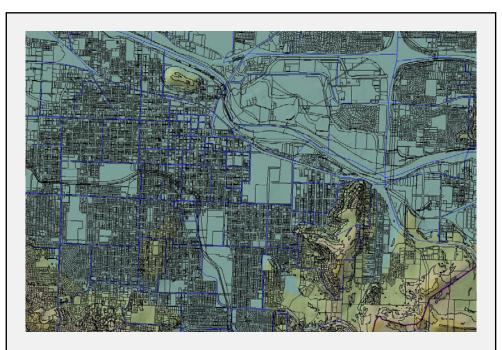
Interaction of Demand and Supply

- · Demand is elastic in the short run
- · Supply is inelastic in the short run
- Change in demand signals supply response, but time lags and constraints may create sustained disequilibrium
- For those that like the concept of equilibrium, can you find it in this graph?

Policy Influence on Urban Development

- · Local government policies may affect:
 - Supply of real estate
 - → UGBs
 - Land use plans, zoning
 - Permit limitations
 - Impact fees
 - Concurrency requirements
 - Demand for real estate
 - Infrastructure and public services
 - Taxes and fees

Webinar 2: Theory and Data for Land Use Forecasting


- 1. How transportation influences land use
 - The role of accessibility
 - Measuring accessibility
- 2. Understanding real estate markets
 - Demand factors
 - Supply factors
 - Demand supply interactions
- 3. Data for Land Use Forecasting
 - Data Requirements
 - Data Problems

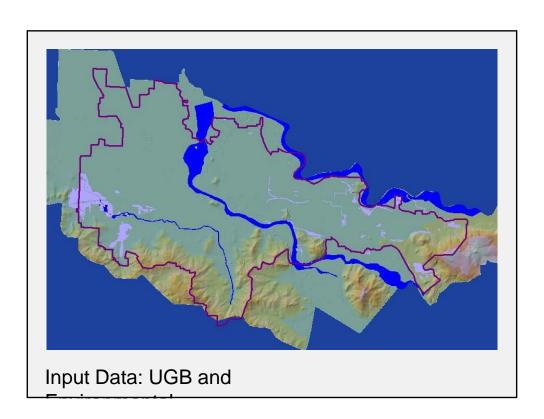
Data Requirements: Macroeconomy

- Macroeconomic and demographic forecasts for a metropolitan area used to 'drive' land use forecasts
- · Principal sources:
 - State economic forecasts
 - Regional planning agency forecasts
 - DRI or other commercial sources
- Methods
 - Generally use econometric or hybrid Input-Output/Econometric techniques
 - Link to national forecasts of output by sector
 - Derive population through migration and 'cohort survival'
- · Feedback of local policies on macro growth ignored

Data Requirements: Land Use

- · Existing land use
 - Aerial photo interpretation
 - Parcel databases (assessor records)
 - Building square footage, value, age
- · Land use plans, zoning
- · Development projects 'in the pipeline'
- GIS is an efficient way to integrate, organize, review and manage these data
- Problems
 - Data are often messy and incomplete
 - Land use coding not standardized

Input Data: Parcels

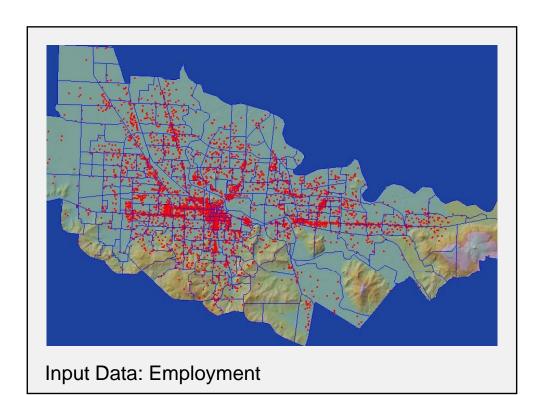

Input Data: Land Use Plans

Data Requirements: Market

- Some methods use real estate market information
 - Housing units and commercial square footage
 - Land and improvement values
- · Assessed values dubious indicators of real prices
 - Especially in California! (Prop 13)
 - Sales prices are better
 - Often available from boards of realtors, or from assessor offices
 - Sales still messy (not always arms-length transactions)
 - Sales of certain types of properties may be sparse


Data Requirements: Environmental

- Some methods use environmental data, usually as GIS layers
 - Wetlands
 - Floodplains
 - Steep slopes
 - Stream buffers
 - Special habitat areas
 - Agricultural, forest or other resource lands
 - Slide areas
 - Other environmentally sensitive lands

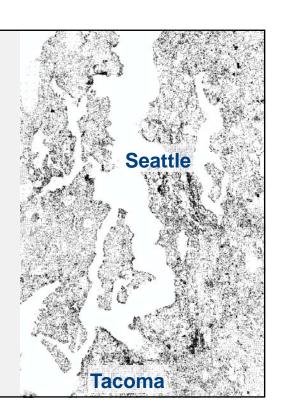

Data Requirements: Demographics

- Census
 - STF3 for socioeconomic data to the block group level
 - STF1 for limited data at the census block level
 - Public Use Microdata for metropolitan sample of individual households and persons
 - Household travel survey
 - Panel surveys ideal (but extremely rare)
 - Household synthesis methods combine census PUMS and STF3 to produce synthetic geocoded households for microsimulation approaches such as TRANSIMS, UrbanSim

Data Requirements: Employment

- · Most problematic of data inputs
- · Generally insufficient investment in these data
- · Sources:
 - State unemployment insurance records (ES202)
 - Dun & Bradstreet, InfoUSA, NETS, and other commercial sources
- Problems
 - Completeness (no self-employed, proprietors)
 - Headquarter reporting
 - Longitudinal matching
 - Classification confusion:
 - Industry
 - Land use
 - Occupation

Problems of Data Integration


- · Need consistent land use, employment and demographic data for modeling
- · Numerous problems make this difficult:
 - Different sources, accuracies, time points, coding standards, levels of completeness and currency
 - Spatial mismatches due to geographies of data collection, geocoding procedures, cartographic inaccuracies
- The big question: is it easier to find and fix data inconsistencies in aggregate or disaggregate form?
- Tools improving for data cleaning, data integration

Data Imputation using Data Mining

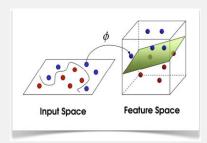
- · Experimental software now in testing
- · Uses Machine Learning and Data Mining algorithms to:
 - Detect errors in data
 - Impute missing values
- · Works for both continuous and categorical variables

The Magnitude of the Problem

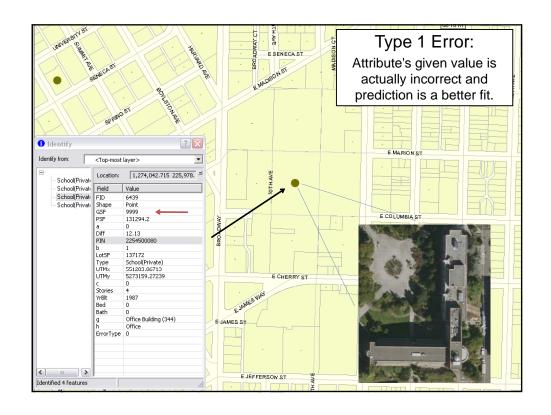
- This map shows only buildings with missing values for "Building Type ID", a description variable
- 195,501 out of ~1,200,000 parcels have Building Type ID = Null in King, Kitsap, Pierce & Snohomish counties

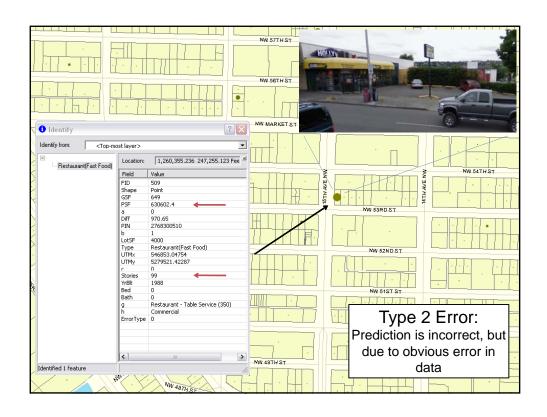
Data Imputation Tool

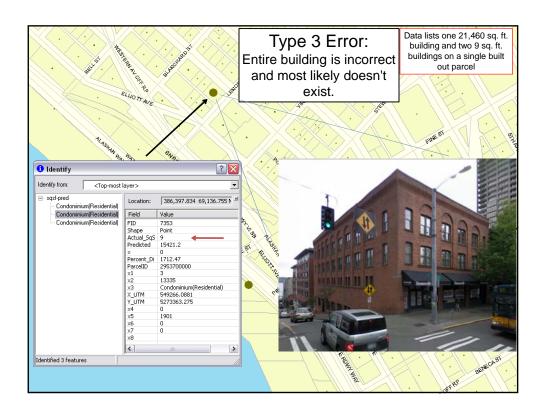
Data Imputation Tool


Numeric Attributes: K-Nearest Neighbor

- Attributes:
 - Stories
 - Bldg SF
 - Improvement Value
- · KNN Basics
 - Finds k closest neighbors in n dimensional space.
 - Uses k neighbors target values to make prediction.


$$L^{n}(x_{1}, x_{2}) = \sqrt[n]{\sum_{i=1}^{\# \text{dim}} |x_{1,i} - x_{2,i}|^{n}} \qquad \hat{f}(x_{q}) \leftarrow \frac{1}{k} \sum_{i=1}^{k} f(x_{i})$$


Categorical Attributes: Support Vector Machines


- Attributes: Building Use Code, Land Use Code, etc.
- SVM maps training instances into higher dimensional space.
- Creates hyper planes that have maximum distances from instances as category boundaries.

