SimMobility Freight: An Agent-Based Urban Freight Simulator for Evaluating Logistics Solutions

Presenters
Peiyu Jing - Takanori Sakai - André Alho

MIT-ITS Lab
Outline

• Overview of SimMobility (*Peiyu Jing*)

• Urban Freight Modelling (*Takanori Sakai*)
 - Business-to-Business
 - E-Commerce

• Application to Last-mile Solutions (*André Alho*)

• Conclusion
Overview of SimMobility

SimMobility: Overview

• **SimMobility**
 An agent-based demand and supply urban transportation simulation platform including passenger and freight (B-to-B & E-commerce)

• **Key Features**
 - Temporal dimensions (long-term, mid-term, short-term)
 - ‘Smart’ mobility services (e.g. on-demand and shared)
 - Dynamic plan-action activity-based
 - Supply agents (inc. fleet/infrastructure management)
 - Open source
SimMobility Agents

• **Demand**
 - Individuals
 - Households
 - Establishments/firms (shippers, receivers)

• **Supply**
 - Transit operators
 - Fleet operators/managers
 (on-demand services, taxis, freight carriers)
 - Network regulators
 (pricing, information, traffic control)
 - E-commerce vendors
 - Real-estate developers
SimMobility Structure

Households and establishments

LONG-TERM
Locations and shipments

HH/Firm locations
Fleets/Parking
Shipments

Accessibility
Logistics performances

MID-TERM
Activities and deliveries

Tours
Trip chains
Fleet operations schedule

Performance measures

SHORT-TERM
Operations
SimMobility Applications

- New modes and services
- Traffic management
- Last-mile solutions
- Post-pandemic scenarios
- Disruptions
- Land-use
- Infrastructure
Prototype Cities

Auto Sprawl
- Metro
- Network
- BRT
- Sustainability
- Inefficiency
- Congestion
- Population
- Wealth

Auto Innovative
- Metro
- Network
- BRT
- Sustainability
- Inefficiency
- Congestion
- Population
- Wealth

Innovative Heavyweight
- Metro
- Network
- BRT
- Sustainability
- Inefficiency
- Congestion
- Population
- Wealth

Cities: Baltimore, Boston, Singapore
Urban Freight Modeling

<table>
<thead>
<tr>
<th>Freight Models</th>
</tr>
</thead>
<tbody>
<tr>
<td>Long-term</td>
</tr>
<tr>
<td>Establishments/Fleets/Overnight Parking</td>
</tr>
<tr>
<td>Shipments</td>
</tr>
<tr>
<td>Mid-term</td>
</tr>
<tr>
<td>Preday Logistics Planning</td>
</tr>
<tr>
<td>Within-day Vehicle Operations</td>
</tr>
<tr>
<td>Mesoscopic Traffic Simulation</td>
</tr>
<tr>
<td>Short-term</td>
</tr>
<tr>
<td>Microscopic Traffic Simulation</td>
</tr>
</tbody>
</table>
B-to-B Shipments

Establishments

Freight Generation
 Commodity Choice
 Annual Production and Consumption

Shipper Contracts
 Contract Allocation
 Shipper Selection

Shipment Size & Frequency

Shipments
E-Commerce Demand

- E-commerce *shipments* to households
- *Groceries, HH Goods,* and *Others*
- *Demand* (frequency, expenditure) is sensitive to *delivery options* (speed, fee, home delivery/pickup)

Example of Home Delivery Options

<table>
<thead>
<tr>
<th>Option</th>
<th>Speed</th>
<th>Fee</th>
<th>Window</th>
<th>Time</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>2-5 days</td>
<td>US$0</td>
<td>No window</td>
<td>Daytime</td>
</tr>
<tr>
<td>2</td>
<td>One day</td>
<td>US$12</td>
<td>No window</td>
<td>Daytime</td>
</tr>
<tr>
<td>3</td>
<td>Same day</td>
<td>US$18</td>
<td>4 hr</td>
<td>Daytime and evening</td>
</tr>
</tbody>
</table>
E-Commerce Shipments

Households

Household-based E-Commerce Demand

- EC Adoption
- EC Expenditure
- Order Value
- Delivery Option

Delivery Order

Distribution Facility

Shipments
Freight Mid-term

Pre-day Logistics Planning

- Carrier Selection
- Vehicle Operations Planning

Vehicle Tours

Within-day Vehicle Operations

- Route Choice
- Parking Choice

Supply

Day-to-day Learning
Freight Demand Example

- Freight (and Passenger) models applied to Auto-Innovative Prototype City (Boston as archetype)

- B-to-B and E-commerce demand were calibrated based on available statistics
Recent Freight Applications

• Overnight freight vehicle parking
• Freight consolidation centres
• Night/Off-peak deliveries
• Route restrictions

In this presentation
• Freight-on-Demand
Application to Last-mile Solutions

Case Study: Freight on Demand

- E-commerce deliveries
 - Increasingly on-demand
 - Smart solutions...leverage Mobility-On-Demand (MOD) capacity?

Source: https://www.straitstimes.com/
Freight on Demand Questions

• Potential deliveries by MOD vehicles:
 - how many deliveries can be handled?
 - time gap between request and pickup/delivery?

• Impact on passenger trips: how service levels may change when adding freight demand?
Freight on Demand Scenarios

- Singapore 2030
- MOD algorithm by the ITS Lab
 - Schedule solo and shared passenger rides
- Assign E-commerce shipments to previously committed and/or idle MOD vehicles

<table>
<thead>
<tr>
<th>Scenario</th>
<th>Freight in MOD</th>
</tr>
</thead>
<tbody>
<tr>
<td>MOD only (Base)</td>
<td>None</td>
</tr>
<tr>
<td>A</td>
<td>MOD shared</td>
</tr>
<tr>
<td>B</td>
<td>MOD shared and idle vehicles</td>
</tr>
<tr>
<td>C</td>
<td>Restricted "B"</td>
</tr>
</tbody>
</table>
Freight on Demand Results

- Increase in requests handled by the MOD operator
 - Small change to MOD passenger service.

- Scenario
 - A: ~50% delivery demand; long waiting times
 - B: ~100% delivery demand; shorter waiting times
 - C: reduces impact on passenger peak period travel

- Small reduction in total VKT observed

- Potential for emissions reduction by using electric MOD vehicles
Conclusion

• SimMobility is a comprehensive platform that jointly simulates passenger, B-to-B, and E-commerce flows.

• Ongoing research:
 - Enhance E-commerce model (supply-side, trip/E-commerce interaction)
 - Application to congestion pricing with passenger and freight
 - New technologies for last-mile solutions
 - Post-pandemic scenarios
Open Source Release

- MT Models code
- Input Demo data (low computational requirement)
- Wiki and User Forum

https://github.com/smart-fm/simmobility-prod
Thank you for listening

This research is supported in part by the National Research Foundation, Prime Minister’s Office, Singapore, under its CREATE programme, Singapore-MIT Alliance for Research and Technology (SMART) Future Urban Mobility (FM) IRG. It is also supported in part by the Singapore Ministry of National Development and the National Research Foundation, Prime Minister’s Office under the Land and Liveability National Innovation Challenge (L2 NIC) Research Programme (L2 NIC Award No. L2NICTDF1-2016-1). Any opinions, findings, and conclusions or recommendations expressed in this material are those of the authors only.

