

Scenario Planning and Visualization

Webinar 8 of an 8-part TMIP Webinar series on land use forecasting methods.

Paul Waddell, 2011

Land Use Forecasting Webinar Series

- 1. The Evolving State of the Practice
- 2. Land Use Theory and Data
- 3. Scenario Planning and Visioning (I-PLACE3S)
- 4. Spatial Input-Output Frameworks (PECAS)
- 5. Dynamic Microsimulation (UrbanSim)
- 6. Modeling Real Estate Demand
- 7. Modeling Real Estate Supply
- 8. Scenario Planning and Visualization

2

Urban Visualization Bridging the Gap Between Urban Simulation, Visualization and Geometric Modeling Application: UrbanVision
URBAN VISUALIZATION

Urban Visualization

- Visualizations of land use forecasting results
 - Used by regional planning agencies to evaluate
 - Alternative transportation investments
 - Land use regulations
 - Environmental protection policies

Urban Visualization

- Visualizations of land use forecasts
 - Interest several groups of population with different levels of expertise in handling data
 - Policy makers
 - The public
 - Modelers running the simulation

Urban Visualization

- Traditional urban visualization techniques
 - Focused on handling large urban simulation datasets
 - Making their analysis more intuitive to urban planners
- In the following, we outline a few representative techniques

Urban Visualization

- Traditional urban visualization techniques
 - Choropleth maps:
 Areas shaded in proportion to the values of the displayed variables
 - (standard GIS respresentation)

Example simulation output: Map-based indicator display for Puget Sound (Total land value per acre, 2000) From UrbanSim Application in Seattle, WA

Urban Visualization

- Traditional urban visualization techniques
 - Cartograms: Distort a map by resizing its regions according to the values of the displayed variable, but keeping the map recognizable

Image from:
Daniel Keim, Stephen North, Christian
Panse, "CartoDraw: A Scanline based
Cartogram Algorithm", 2004.

Urban Visualization

• Legible Cities Chang, Wessel, Kosara, Sauda, Ribarsky

• TVCG 2007

Urban Visualization

• Goal: Visualize an urban model in a focus-dependent, multiresolution fashion, while retaining the legibility of the city

Original Model 45% polygons18% polygons

Paul Waddell, 2011

Urban Visualization

- Integrate 3D model view and data view
 - Relationships between the geospatial information of the urban model and the related urban data can be more intuitively identified

Urban Visualization

- Geographically Weighted Visualization Dykes, Brunsdon
- TVCG 2007

Paul Waddell, 2011

Urban Visualization

- Visually encode information about geographic and statistical proximity and variation through
 - geographically weighted (GW)-choropleth maps
 - multivariate GW-boxplots
 - GW-shading and scalograms
- New graphic types reveal information about GW statistics at several scales concurrently

- 1. Urban Visualization
- 2. Bridging the Gap Between Urban Simulation, Visualization and Geometric Modeling
- 3. Application: UrbanVision

Visualization of Simulated Urban Spaces

- Infer an urban layout
 - Images (aerial view) + Structure (streets, parcels)

from the values of a set of simulation variables at any given time step

Visualization of Simulated Urban Spaces

- Approach
 - Spatially match socioeconomic data set with input aerial images and structure of the urban space

Visualization of Simulated Urban Spaces

Paul Waddell, 2011

- Approach
 - Create new structure that matches a set of attributes inferred from the simulation variables
 - New blank lots are created

Visualization of Simulated Urban Spaces

- Approach
 - Aerial view imagery is "borrowed" from existing lots of the city with similar socioeconomic attributes as the new blank lot

Visualization of Simulated Urban Spaces

• Example result

Bridging the gap between urban simulation, visualization and modeling

- Interactive Geometric Simulation of 4D Cities Weber, Müller, Wonka, Gross
- Eurographics 2009

Paul Waddell, 2011

Interactive Geometric Simulation of 4D Cities

- Problem:
 - How to model cities that are changing over time?
 - How to use the urban simulation data to infer the geometry of the city (roads, lots, buildings)?

time

Interactive Geometric Simulation of 4D Cities

• Traffic simulation for street generation

Paul Waddell, 2011

Interactive Geometric Simulation of 4D Cities

- Land use simulation
 - Optimization of a land use value function

$$\mathit{luv} = \lambda_{\mathit{global}} \cdot \mathit{luv}_{\mathit{global}} + \lambda_{\mathit{local}} \frac{\sum_{\forall i} \mathit{lot}[i].\mathit{area} \cdot \mathit{lot}[i].\mathit{luv}}{\sum_{\forall i} \mathit{lot}[i].\mathit{area}}$$

- Global and Local land use goals

ul Waddell. 2011

Bridging the gap between urban simulation, visualization and modeling

• Interactive Design of Urban Spaces using Geometrical and Behavioral Modeling

Vanegas, Aliaga, Benes, Waddell

• SIGGRAPH Asia 2009

Video

Paul Waddell, 2011

Interactive Design of Urban Spaces using Geometrical and Behavioral Modeling

 Interactive Design of Urban Spaces using Geometrical and Behavioral Modeling

Interactive Design of Urban Spaces using Geometrical and Behavioral Modeling

- System
 - Consists of N variables defined over a spatial domain
 - Each variable sampled over a 2D spatial grid G of size W x H
 - $v_k(i,j)$ denotes the value of k-th variable at grid cell (i,j)

Paul Waddell, 2011

Interactive Design of Urban Spaces using Geometrical and Behavioral Modeling

- Operations
 - Location and de-location of behavioral variables using location choice and mobility algorithms

Interactive Design of Urban Spaces using Geometrical and Behavioral Modeling

Interactive Design of Urban Spaces using Geometrical and Behavioral Modeling

• Validation of urban behavioral+geometric simulation model

Procedural Buildings, Parcels and Cities

Buildings Video

Parcels Video

Cities Video

Paul Waddell, 2011

Interactive Design of Urban Spaces using Geometrical and Behavioral Modeling

Urban Visualization
 Bridging the Gap Between Urban Simulation, Visualization and Geometric Modeling
 Application: UrbanVision

Stakeholders Create Scenarios Using Place Types

Stakeholders assign place types to map: must match target population and employment

Source: SACOG

Paul Waddell, 2011

Fusion: Visioning, Modeling, Visualization

- Take the best elements of modeling and scenario planning and hybridize
- Use scenario planning to engage community in creating a preferred Vision
- Use disaggregate land use models to **Analyze** scenarios
- Use 3D visualization and indicators to Visualize scenarios
- This is the aim of the UrbanVision platform

The UrbanVision Project

- Funded by Metropolitan Transportation Commission, NSF, and the University of California (MRPI)
 - MTC Plan Bay Area, a Sustainable Communities Strategies Planning Process
 - Involves visioning, modeling, and visualization for community engagement
- Collaborative Project between UC Berkeley and Purdue University
- Summary:
 - Develop an extension to UrbanSim
 - Add 3D geometric modeling and rendering
 - Add flexible indicator and accessibility framework
 - Add scenario editing/creation interface

Paul Waddell, 2011

UrbanVision Design Elements and Use Cases

- Use Case 1: Visualize completed scenarios
 - Generate 3D buildings and streetscapes consistent with scenario
 - Support interactive exploration of 3D rendering, including comparison of scenarios
 - Generate animated visualization of traffic and pedestrians consistent with scenario
 - Generate indicators consistent with scenario
- Use Case 2: Generate detail for a zone-level scenario
 - Given initial vision-based scenario at a zone level, fill-in details
 - Use zoning editor to set zoning and overlays for scenario at a parcel level
 - Generate buildings within building envelopes, up to zone-level targets
 - Allocate target population and employment
- Use Case 3: Create, Model, and Visualize scenarios, generate preferred scenario
 - Use UrbanSim and new developer model + zoning editor + 3D Visualization

The "buffer query" • Variables in location choice models • Variables in travel model generators/attractors • Real estate comparables • Micro-accessibility measures for walkability

Parcels	Buildings	Households	Persons	Jobs
Parcel id	Building id	Household id	Person id	Job id
Zones, cities, zip code, etc.	Parcel id	Building id	Household id / Job id (if worker)	Building id
1.18 million parcels	1.0 million buildings	1.28 million households	3.2 million people	1.85 million jobs

Accessibility Engine: High-performance Accessibility Queries

- On a Bay Area all-streets network has 456K links, 355K Nodes, computing a Walk Score (our implementation), accumulating approximately 15 different Points of Interest for each node, takes less than 3 seconds.
- On a national all-streets network with approximately 12 million nodes, queries such as the number of intersections within 1/3 kilometer runs in 15 seconds (total, for all nodes in the national network)
- Point-to-Point Accessibilities (minimum path) queries are extremely fast:
 - Bay Area sized network: ~ 20-40 microseconds per query
 - Continental sized network: ~ 100 microseconds per query
- This Accessibility Engine is being developed into an API for use in models and other ad-hoc queries

Paul Waddell, 2011

Building Types in UrbanVision Used for Proforma Real Estate Modeling and for Procedural Modeling of 3D Buildings

14 base types, total of 64 sub-types, used for both real estate modeling (pro-formas), and procedural modeling and rendering

Summary and Next Steps

- · Developed an integrated UrbanVision platform for
 - Visioning: engaging communities in designing their future
 - Modeling: analyzing alternative land use and transportation policy/design scenarios
 - **Visualizing:** 3D representation of alternative scenarios, with indicators
- Developed efficient pedestrian-scale accessibility and urban design calculator
- Implementing a realistic real estate development simulator
- Tightly coupling: UrbanSim+Activity-Based Travel Model+UrbanVision
- Will launch in public workshops in the Bay Area in January 2012
- Immersive Cities Lab at UC Berkeley

Questions and Discussion

Presenters:

Paul Waddell Department of City and Regional Planning University of California Berkeley email: waddell at berkeley.edu

Carlos Vanegas Department of Computer Science Purdue University